Wednesday, July 26, 2006

Pollards rho metode

Kurve haves over E(Fq) To punkter haves. Find et k så kP=Q
Random funktion anvendes. Visuelt Rho dannes og sammenfald nøjagtig der hvor cyklus begynder. Samme tidskomplexitet som Babiystep giant step- men fordel: very smal storage.


Update: english TRANSLATION:
Pollards rho method -this is how I understand it. I assume you have already been reading about it in general - this is an extract:

You have a curve E over a finie field Fq, E(Fq)
You have to points
Find a k so that kP=Q
Use random function.
Visualize a Rho ( the Greek letter) and you have a crosspoint exactly where the cycle begin.
Same complexity in time as Baby Step Giant Step - but advantage: very small storage

links:
Image:
http://commons.wikimedia.org/wiki/File:Rho-pollard.png
the math:
http://mathworld.wolfram.com/PollardRhoFactorizationMethod.html

No comments: